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Abstract. Recent one-stage CNN based detectors attract lots of re-
search interests due to the high detection efficiency. However, their de-
tection accuracy usually is not good enough. The major reason is that
with only one regression step, one-stage detectors like SSD build fea-
tures which are not representative enough for both classification and
localization. In this paper, we propose a novel module, Comprehensive
Feature Enhancement(CFE) module, for largely enhancing the features
of one-stage detectors. The effective yet lightweight module could im-
prove the detection accuracy with only increasing little inference time.
Moreover, we propose two new one-stage detectors by assembling CFEs
into the original SSD: CFE-SSDv1 and CFE-SSDv2. The CFE-SSDv1 is
of simple structure with high efficiency while CFE-SSDv2 is more accu-
rate and improves dramatically on detecting small objects especially. We
evaluate the proposed CFE-SSDv1 and CFE-SSDv2 on two benchmarks
for general object detection: PASCAL VOC07 and MS COCO. Experi-
mental results show that CFE-SSDv2 outperforms state-of-the-art one-
stage methods such as DSSD and RefineDet on these two benchmarks.
Moreover, additional ablation study demonstrates the effectiveness of
the proposed CFE module. We further test the proposed CFE-SSDv2 on
UA-DETRAC dataset for vehicle detection and BDD dataset for road
object detection, and both get accurate detection results compared with
other state-of-the-art methods.

1 Introduction

Object detection is one of the most fundamental problems in the field of com-
puter vision, and recent deep neural network (DNN) based methods achieve
state-of-the-art results for this problem. The state-of-the-art methods for general
object detection can be briefly categorized into one-stage methods (e. g.,YOLO
[24], SSD [22], Retinanet [19], DSSD [5], RefineDet [36]), and two-stage methods
(e.g., Fast/Faster R-CNN [27], FPN [18], Mask R-CNN [9]). Generally speaking,
two-stage methods usually have better detection performance while one-stage
methods are more efficient.

For many real world applications, e.g., video surveillance and autonomous
driving, an adequate object detector should be effective and efficient enough, and
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Fig. 1. CFE-SSDv1 effectively enhance the corresponding features for small objects. (a)
An image for testing. (b),(c) The feature map for detecting small objects respectively
of CFE-SSDv1 and the original SSD. (d) The structure of CFE-SSDv1.

has strong ability to detect small objects. For example, regarding the application
of autonomous driving, the object detector should be very effective to sense the
surrounding scenes and also should be very efficient to avoid obstacles in time.
Moreover, the ability of detecting small objects is very important in autonomous
driving scenes, due to that large portion of small objects appears in these scenes,
such as traffic lights, traffic signs and faraway objects. However, state-of-the-art
detectors cannot fulfill all the above requirements. Hence, in this work, we make
a first attempt to propose a detector can fit all these requirements.

To achieve this goal, we improve the most widely used one-stage detector SSD
by enhancing the CNN features for predicting candidate detections, based on our
observations: (1) the shallower layer features used to detect small objects doesn’t
contain rich high-level semantic information thus not discriminative enough for
the classification task, and (2) the deeper layer features used to detect large
objects are less position-sensitive thus not accurate enough for the bounding
box regression task. To be more specific, we propose a novel Comprehensive
Feature Enhancement(CFE) module and assemble four CFE modules into the
network architecture of SSD for enhancing the CNN features. As illustrated in
Figure 1, CNN features corresponding to small objects are effectively enhanced
by the proposed CFE modules. Moreover, experimental results show that CFE
module can also promote the detection performance of other one-stage detectors
like DSSD [5] and RefineDet [36].

The main contributions of this work are summarized as follows.

– We introduce Comprehensive Feature Enhancement (CFE) module, an ef-
fective and flexible module for learning better CNN features to improve the
detection accuracy of the single shot object detectors.
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– Based on the proposed CFE module, we further propose two one-stage de-
tectors, CFE-SSDv1 and CFE-SSDv2, which are efficient as SSD while have
much better detection accuracy than SSD, especially for small objects.

– The proposed CFE-SSDv2 achieves good results on multiple benchmark
datasets: outperforms the state-of-the-art one-stage detectors DSSD and Re-
fineDet on VOC07 and MS-COCO datasets for general object detection,
gains the best result on UA-DETRAC [33] dataset for vehicle detection, and
the second best result on BDD [35] dataset for road object detection.

2 Related Work

Due to DNN based methods become dominate now, we only review them in this
section, which can be briefly divided into two groups: two-stage detectors and
one-stage detectors.

Two-stage Detectors. The two-stage detectors consist of a proposal gen-
eration stage (e.g., Selective Search [32] for Fast R-CNN [7] and RPN for Faster
R-CNN [27]) and a stage for object classification and bounding box regression.
The two-stage detectors (e.g., R-CNN [8], Fast R-CNN [7], Faster R-CNN [27],
R-FCN [3], HyperNet [15], FPN [18], Mask R-CNN [9], PANet [21]) keep achiev-
ing state-of-the-art performance on several challenging datasets such as PASCAL
VOC 2007, 2012 [4] and MS COCO [20]). However, their efficiency is not high
enough, which is the main drawback of them.

One-Stage Detectors. The one-stage detectors directly perform object
classification and bounding box regression over a regular, dense sampling of
object locations, scales, and aspect ratios, that is, skip the proposal generation
stage. One-stage detectors usually have notably higher efficiency than two-stage
detectors. YOLO [24] and SSD [22] are two representative one-stage detectors.
YOLO adopts a relatively simple architecture thus very efficient, but cannot deal
with dense objects or objects with large scale variants. As for SSD, it could detect
objects with different sizes from multi-scale feature maps. Moreover, SSD uses
anchor strategy to detect dense objects. Therefore, it achieves a pretty detection
performance. In addition, SSD with input size of 512*512 can achieve the speed
of about 23 FPS on the graphics processing unit (GPU) such as Titan XP. Due to
the above advantages, SSD becomes a very practical object detector in industry,
which has been widely used for many tasks. However, its detection performance
is still not good enough, especially for small objects. For example, on the test-dev
set of MSCOCO [20], the average precision(AP) of small objects of SSD is only
10.9%, and the average recall(AR) is only 16.5%. The major reason is that it
only uses shallow feature maps to detect small objects, which doesn’t contain rich
high-level semantic information thus not discriminative enough for classification.
Recently proposed one-stage detector RetinaNet [27] show comparable detection
performance with the state-of-the-art two-stage detectors. However, its efficiency
is not good when the best detection performance is achieved. More recently pro-
posed RefineDet [36]performs best among the existing one-stage detectors, in
both terms of detection accuracy and speed. RefineDet uses an Encode-Decode
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Fig. 2. Example structures for learning representative features: (a) the Inception mod-
ule [30], (b) the large separable module [16], (c) the ResNeXt module [34] and (d) our
CFE module. A Conv represents a combination of Conv+BatchNorm+ReLU layers.

[5] structure to deepen the network and upsample feature maps so that large-
scale feature maps can also learn deeper semantic information. On the other
hand, RefineDet uses the idea of cascade regression like Faster-RCNN [27], ap-
plying the Encode part to firstly regress coarse positions of the targets, and then
use the Decode part to regress out a more accurate position on the basis of the
previous step. On MSCOCO test-dev, it gets the average precision of 16.3% and
an average recall of 29.3% for small objects. Also, RefineDet with VGG backbone
could perform with high efficiency. Although the result achieved by RefineDet is
much better, there is still much room for performance improvement.

CNN Structures. In addition, we also review some developments of CNN
structure which are also introduced to our CFE module. First, Convolution(Conv)
layers have powerful feature learning capabilities, and stacking multiple 3x3 Conv
layers can capture advanced semantics [29]. Inspired by NIN [17], Inception mod-
ule(in Figure 2.a) proposes the split-transform-merge method, decomposing a
Conv layer into multiple joint 1×1 and k×k conv layers combinations. More-
over, Xception [2] and MobileNet [12] take use of connecting depthwise separable
convolution and pointwise convolution for weight lighting.

Second, it is necessary to expand the scope of the proximity relationship
and learn the high-level semantics from large receptive field. Inside an upgraded
version of Inception, like Inception V3 [31], Conv layers with kernel size=7 are
applied for expanding the receptive field. Specifically, after factorization, contin-
uously connecting 1x7 and 7x1 Conv layers can decrease parameter magnitude,
while still keeping the area of its receptive field. And shown in Figure 2.b, the
large kernel convolution is proposed in [23] to improve semantic segmentation,
the large separable module [16] is also implemented after feature extraction in
object detection system.

Third, decreasing redundancy is also of great significance. ResNet [11] in-
troduces the Bottleneck structure to achieve this target. Additionally, as shown
in Figure 2.c, ResNeXt [34] proposes to group convolution kernels. Specifically,
the aggregated transformations of ResNeXt module replace the Conv layers of
original ResNet module with blocks of the same topology stacked in parallel.
This scheme improves the model without increasing the parameter magnitude.
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3 Comprehensive Feature Enhancement(CFE) module

Our target is to design a module for learning better features, which should have
advantages in terms of receptive field and learning capacity, also have less weight
redundance and is easy to converge.

As shown in Figure 2.d, the main framework is based on a residual structure,
so that module is easy to converge [11]. The output from the right side of the
model is multiplied by a value(i.e., α in equation.(1)) to control its contribution
to the final output. Given the input feature X ∈ RB×C×W×H , the CFE module

Gcfe generate a feature of Y ∈ RB×Ĉ×Ŵ×Ĥ , the spatial dimensions of which
are downsampled if the striding parameter set to be bigger than 1. The CFE
operation can be formulated as:

Y = Gcfe(X) = α · T ([F+(X),F−(X)]) + t(X), (1)

where t(·) is a short connection of striding function, T(·) is the bottleneck output
layer for tuning channels. To be more specific, function F contains four continu-
ous operations: a 1x1 Conv layer for tuning internal channels, two adjacent 1xk
and kx1 Conv layers and a 3x3 Conv layer. F+(·) and F−(·) both contain these
convolution layers, the main difference of them is the ordering between 1xk Conv
and kx1 Conv. As a whole, Gcfe function combines the advantages of residual
learning and dual learning, and benefit to convergence in training process.

The motivation of designing function F is to learn more non-linearity rela-
tions, we apply the idea of split-transform-merge. In detail, splicing a 1x1 Conv
layer before a larger-kernel Conv layer(initially, a k×k Conv layer), and finally
followed by a 1x1 Conv layer to adjust the output dimensions. Note that the
inside Conv layer with large kernel is the most significant component for feature
learning. To lighten the weight and keep receptive field, we use a combination of
1xk and kx1 and its inverse combination to learn more comprehensive features.
Obviously, increasing k will expand the receptive field.

After having strengthened the high-level semantics and expanded the recep-
tive field through Conv layers, we also need to consider the problem of weights
redundancy [31], which fails to achieve fully training on small-scale dataset, e.g.,
Pascal VOC. Specifically, we should avoid excessive feature redundancy among
channels. We use group convolution to increasing sparsity as well as shrinking
the redundancy [34], which is proved to be effective by experiment. In order to
assure powerful learning ability, we add another 3x3 Conv layer to compensate.

Some other details also should be concerned with. Since a 1x1 Conv layer
can be used to adjust channels, the top and bottom 1x1 Conv layers together
make our module flexibly inserted into arbitrary positions. Each of these Conv
layers in Figure 2 represents a group of Conv+BN+ReLU layers. In addition, the
Conv layer with kernel size k has (k-1)/2 padding, so that the shape of input and
output features can be unchanged. Alternatively, if we have to apply a striding
operation (for a stride size bigger than 1 such as 2), we set striding size of one
of the 1xk kernels to be 2, and then add another Conv layer with stride 2 at the
left side shortcut of the module. All of the Conv layers are initialized using the
MSRA [10] method.
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Fig. 3. (a) The way of assembling CFE modules for CFE-SSDv2. (b) The way of
assembling CFE modules for DSSD(solid parts) and ReifineDet(dashed parts).

4 Detection Networks with CFE

CFE could be assembled into multiple one-stage detectors due to its flexible
structure. In this section, we first introduce two architecture based on SSD,
CFE-SSDv1 and v2 in section Section 4.1. Then we illustrate the strategy to
cooperate with other detectors in Section 4.2, such as DSSD [5] and RefineDet
[36].

4.1 CFE-SSD

CFE-SSDv1. We have analyzed how weak shallow features of SSD influence
the detection results of small objects, so our target is to enhance SSD by assem-
bling CFE modules at the most sensitive position. It’s noteworthy that adding
too many modules excessively is also suboptimal because this operation increase
inference time as well as make training process more difficult (i.e., if we broaden
the input size, a smaller batch size can’t fit very well). As shown in Figure 1.d, we
first insert two CFE modules following the output of the backbone. Then we can
get the output feature of them respectively, i.e., Conv6 1 and Conv6 2 shown
in Figure 1.d. These additional layers effectively increase the depth of the corre-
sponding detection features. In addition, we connect another two separate CFE
modules to Conv4 3 and Conv6 1 detection branch respectively. Since the two
layers are relatively shallow, and its learned features are not high-level enough.
We use CFE modules to deepen the Conv4 3 and Conv6 1 feature layers as well
as broaden the receptive fields. Since this scheme only make a simple modifica-
tion to the SSD architecture, we call it CFE-SSDv1. Moreover, we can find from
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Figure 1.c and Figure 1.b that Conv4 3 feature indeed generates more distin-
guishable and position-sensitive features. The CFE modules replace the original
3x3 Conv layers in CFE-SSDv1, so this operation does not increase inference
time a lot.

CFE-SSDv2. The network topology is very important for the improvement
of detection accuracy. The two feature maps with the largest resolution of CFE-
SSDv1 have been enhanced directly, but no other assistance has been obtained
to supplement the rich semantic information from the arterial part of the net-
work. To further improve small objects detection, we propose an advanced ver-
sion, CFE-SSDv2. With the idea of feature fusion, CFE-SSDv2 improves the
ability of small objects detection of shallow features compared with the CFE-
SSDv1. As shown in Figure 3.a, the two shallowest feature maps are restructured
through connecting feature fusion blocks (FFB) between Conv4 3 and Conv6 1,
Conv6 1 and Conv6 2. Our goal is to combine a relatively shallower layer with
a relatively deeper layer, which respectively represent more accurate spatial in-
formation and deeper semantic knowledge. To make models more concise and
elegant, we only apply easy operations here, which also improve computing ef-
ficiency. FFB has two kinds of variants: FFB a, shown in Figure 3.a, whose
main strategy is element-wise summation; and FFB b, where the fusion strat-
egy is concatenation. We have compared the two kinds of blocks in experiment
section 4. Due to concat operation will double the output channels, so we use
the 1x1 Conv layer to slim the channels before feature fusion for fair compari-
son, and it leads to suboptimal compared with summation operation. Note that
the FFB module is intentionally simplistic, to ensure inference efficiency and
decrease training complexity. Armed with two FFB modules, CFE-SSDv2 gets
more improvement. For both v1 and v2, we use hard-NMS for post-processing
after filtering anchor boxes with a confidence score threshold of 0.01.

For one-stage detectors, the bottleneck of accuracy depends on backbone
model and input size mostly. However, large input size (e.g., 800x800) and heavy
backbone (e.g., SE-ResNeXt101 [13]) make the batch size in training process
smaller, which will influence the model’s learning ability directly and also make
training time longer. According to our experience, it is required that a batch size
bigger than 4 per GPU to train well an one-stage detector. So we build CFE-SSD
with the consideration that compacting model structure for increasing a larger
input size or changing a more powerful backbone. This is why we do not add
too many extra layers for CFE-SSD.

4.2 CFE-DSSD and CFE-RefineDet

To evaluate the generalization of CFE modules, we have tested on other base
detectors. DSSD [5] and RefineDet [36] are state-of-the-art one-stage detectors.
They have such improvements for the original SSD. However, CFE could still
benefit them. As shown in Figure 3.b, we add two CFE modules at the positions
before prediction layers of the small-objects sensitive layers. In detail, the area
of solid lines is for DSSD, and the area of dashed lines is for RefineDet.
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We do not consider assembling more CFEs and FFBs on DSSD and RefineDet
since their contribution(Encode-Decode structure, cascade regression strategy)
somewhat overlaps with the effects of CFE module for helping to detect small
objects. CFE modules have better performance on them, but the improvement
is much smaller than on original SSD.

5 Training Details

5.1 Data augmentation

Data augmentation is essential for training. The experiments in SSD illustrate
that an appropriate data augmentation strategy helps train a better model. Our
strategy is the same as that of SSD [22], including image cropping, expansion,
mirroring and distortion. In this work, it improves the results of CFE-SSDv1
and CFE-SSDv2 a lot especially in the term of small-size.

5.2 Design of Anchor

For a fair comparison with SSD and its variants, we identically select 6 feature
layers when input size is 300×300, 7 feature layers when input size is 512×512
or 800×800, to regress detection results. As for aspect ratios of anchors, we keep
the default settings of SSD except adding (3,1/3) ratio at the first regression
layer when training Pascal VOC and COCO. For DETRAC and BDD, we set
the parameters of anchors by analyzing the ratio distribution of ground truth.
We train anchors adequately with hard negative mining strategy, which helps
mitigate the extreme foreground-background class imbalance. Specifically, we
select negative anchors that have top loss values to make the ratio between
the negatives and positives below 3:1. Note that we judge whether a proposal is
positive or not according to its biggest IoU value with ground truth. If it exceeds
the threshold (0.5 as default), we treat the proposal as positive.

6 Experiments

Experiments are conducted on four datasets: PASCAL VOC 2007, MS COCO,
UA-DETRAC and BDD. It’s worth nothing that, for a fair comparison, we
mainly compare methods based on VGG-16 backbone [29], which is pre-trained
on the ImageNet dataset. For all experiments based on CFE modules, we start
training with warm-up strategy, initialize the learning rate of 2×10−3, and then
drop to 2 × 10−4 and 2 × 10−5 when loss stops decreasing. The experiment on
CFE-SSDv2 with ResNet-101 backbone is conducted on a machine with 2 V100
GPUs, others are conducted on a machine with 4 Titan X GPUs. Both use
CUDA 8.0 and cuDNN v6.



Comprehensive Feature Enhancement 9

Table 1. Detection results comparison on PASCAL VOC07 dataset

Method Data Backbone Input size #Boxes FPS mAP
two-stage:

Fast R-CNN [7] 07+12 trainval VGG-16 ∼1000 × 600 ∼2000 0.5 70.0
Faster R-CNN [27] 07+12 trainval VGG-16 ∼1000 × 600 300 7 73.2
Faster R-CNN [27] 07+12 trainval ResNet-101 ∼1000 × 600 300 2.4 76.4

ION [1] 07+12 trainval VGG-16 ∼1000 × 600 4000 1.25 76.5
MR-CNN [6] 07+12 trainval VGG-16 ∼1000 × 600 250 0.03 78.2
R-FCN [3] 07+12 trainval ResNet-101 ∼1000 × 600 300 9 80.5

one-stage:
YOLO [24] 07+12 trainval GoogleNet 448 × 448 98 45 63.4

RON384 [14] 07+12 trainval VGG-16 384 × 384 30600 15 75.4
SSD300* [22] 07+12 trainval VGG-16 300 × 300 8732 46 77.2
DSOD300 [28] 07+12 trainval DenseNet-64 300 × 300 8732 17.4 77.7
DSSD321 [5] 07+12 trainval ResNet-101 321 × 321 17080 9.5 78.6

RefineDet320 [36] 07+12 trainval VGG-16 320 × 320 6375 40.3 80.0
CFE-SSDv1-300 07+12 trainval VGG-16 300 × 300 11620 42.2 80.2

CFE-SSDv2-300 07+12 trainval VGG-16 300 × 300 11620 41.5 80.5
YOLOv2 [25] 07+12 trainval Darknet-19 544 × 544 845 40 78.6
SSD512* [22] 07+12 trainval VGG-16 512 × 512 24564 19 79.8
DSSD513 [5] 07+12 trainval ResNet-101 513 × 513 43688 5.5 81.5

RefineDet512 [36] 07+12 trainval VGG-16 512 × 512 16320 24.1 81.8
CFE-SSDv1-512 07+12 trainval VGG-16 512 × 512 32756 22.0 81.8

CFE-SSDv2-512 07+12 trainval VGG-16 512 × 512 32756 21.2 82.1

6.1 Results on PASCAL VOC 2007

In this experiment, we train our models on the union set of VOC 2007 and
VOC 2012 trainval set (approximately 16,500 pictures) with 20 categories and
test them on the VOC 2007 test set. Stochastic Gradient Descent (SGD) with
momentum of 0.9 and weight decay of 0.0005 was used for optimization. Table 1
shows the results.

Compare with previous state-of-the-art methods. In Table 1 , SSD300*
and SSD512* are the upgraded version of SSD with the new data augmentation
methods [22], which are the baselines for one-stage detectors. By integrating
our CFE module, the original SSD300 model obtains a mAP of 80.5% at the
speed of 42.5fps. Obviously, CFE-SSDv2 outperforms SSD and also keeps its
speed. Compared with state-of-the-art two-stage methods, CFE-SSDv2 300 out-
performs most of them and achieves the same accuracy as R-FCN, whose back-
bone is ResNet-101 and input size is ∼ 1000 × 600. By using a larger input size
512 × 512, CFE-SSDv2 512 gets 82.1% mAP, better than most object detection
systems for both one-stage and two-stage. In addition, CFE-SSDv2 exceeds an-
other version of modified SSD, DSSD [5], by a large margin. DSSD321 equipped
with ResNet101 and broadening the input size to 321×321 still gets lower results
by 2% compared with our method. As for input size of 512(including 513), we
still outperform the heavy DSSD and also keep real-time efficiency. RefineDet is
another state-of-the-art one-stage method. Both our 300(including 320) and 512
versions are higher than each of RefineDet. Specifically, CFE-SSDv2 300 not
only performs better but is also more accurate. CFE-SSDv2 512 outperforms
RefineDet512 as for detection accuracy and achieves state-of-the-art.
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Table 2. Comparison of different modules
module name CFE-SSD result(mAP)

SSD(baseline) [22] None 77.24
Inception module [31] v1 78.91

Large separable module(k=7)[16] v1 78.10
ResNeXt module[34] v1 77.44
CFE module (k=3) v1 79.96
CFE module (k=5) v1 80.05
CFE module (k=7) v1 80.16
CFE module (k=7) v2 80.49

Table 3. Results of different
groups in CFE(when k=3)

groups results(mAP)
1 79.31
2 79.58
4 79.64
8 79.96
16 79.88
32 79.42
64 78.92

Table 4. Comparison between different
CFE-SSD settings

FFB type FFB Result(mAP) Speed(fps)
None ( v1) 0 80.16 42.21

Concat 1 80.42 42.01
Concat 2 80.43 41.77

Sum ( v2) 2 80.49 41.48

Table 5. Results of DSSD and Re-
fineDet with CFE modules

Method Size CFEs VOC07 COCO
DSSD 320 0 77.47 27.4

CFE-DSSD 320 2 78.86 29.5
RefineDet 320 0 80.01 29.4

CFE-RefineDet 320 2 80.00 30.5

Analysis of different modules. We conducted experiments to evaluate
the components of CFE-SSDv1 and v2, CFE module itself and also test the
generalizations of CFE module on DSSD [5] and RefineDet [36]. If not specified,
default settings are: the large kernel is k=7; group convolution of 8; input size is
300×300; base architecture is CFE-SSDv1. The results are shown in Table 2∼
Table 5.
Compare with different modules. To prove that CFE does have great effects
for improving detection performance, we compare CFE module with other pop-
ular modules to assemble in SSD. As shown in Table 2. CFE module with k=3
already outperforms the existing modules, and increasing k will further improve
the accuracy. We have tried a larger k, but the performance begins to drop, it
can be concluded that CFE module with k=7 is enough for keeping a large re-
ceptive field. The last line in Table 2 shows the effects of changing the topology
structure to CFE-SSDv2.
Groups. We suggest to group convolution kernels to decrease the module weight
as well as reducing the FLOPs and find that this operation can also improve de-
tection accuracy. We deduce that group convolution controls the redundancy and
even learns better feature on small-scale dataset (e.g., Pascal VOC). As shown
in Table 3, grouping convolution kernels to 8 groups is relatively the best.
FFB. We compare the effectiveness and efficiency of different settings of FFB,
CFE-SSDv1 is relatively more efficient while CFE-SSDv2 is more accurate one
that achieves a better result. Due to we keep the output channels, concat has only
1/2 input channels as summation operation. Furthermore, we select FFB type of
summation(sum shown in Table 4) as the final fusion method for CFE-SSDv2.

CFE on other detectors. Moreover, not only SSD, DSSD and RefineDet
could also get improvements by the assembling of CFE modules as illustrated
in Table 5. The networks are illustrated in Section 4. Both of the two detectors
insert two CFE modules. The improvement on Pascal VOC is relatively less due
to the reason that different methods may contribute similarly and somewhat has
increased the redundancy instead. We further evaluate it on MS-COCO 2014
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Table 6. Detection accuracy comparisons in terms of mAP percentage on MS COCO
test-dev set

Method Backbone Input size
Avg. Precision, IoU: Avg. Precision, Area:
0.5:0.950.5 0.75 S M L

SSD300* [22] VGG-16 300×300 25.1 43.1 25.8 6.6 25.9 41.4
RON384++ [14] VGG-16 384×384 27.4 49.5 27.1 - - -

DSSD321 [5] ResNet-101 321×321 28.0 46.1 29.2 7.4 28.1 47.6
RefineDet320 [36] VGG-16 320×320 29.4 49.2 31.3 10.0 32.0 44.4
CFE-SSDv1-300 VGG-16 300×300 29.3 49.0 31.0 10.6 31.7 44.3

CFE-SSDv2-300 VGG-16 300×300 30.4 50.5 31.3 12.1 32.2 46.4
YOLOv2 [25] DarkNet-19 544×544 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 [26] DarkNet-53 608×608 33.0 57.9 34.4 18.3 35.4 41.9
SSD512* [22] VGG-16 512×512 28.8 48.5 30.3 10.9 31.8 43.5
DSSD513 [5] ResNet-101 513×513 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet500 [19] ResNet-50 500×500 32.5 50.9 34.8 13.9 25.8 46.7
RefineDet512 [36] VGG-16 512×512 33.0 54.5 35.5 16.3 36.3 44.3
RefineDet512 [36] ResNet-101 512×512 36.4 57.5 39.5 16.6 39.9 51.4
CFE-SSDv1-512 VGG-16 512×512 33.8 55.1 35.7 16.2 37.2 46.3
CFE-SSDv2-512 VGG-16 512×512 35.2 56.4 36.9 17.5 38.3 47.5

CFE-SSDv2-512 ResNet-101 512×512 39.6 60.3 42.7 21.2 44.2 53.1
RefineDet320-MS[36] VGG-16 320×320 35.2 56.1 37.7 19.5 37.2 47.0
RefineDet512-MS[36] VGG-16 512×512 37.6 58.7 40.8 22.7 40.3 48.3
RefineDet512-MS[36] ResNet-101 512×512 41.8 62.9 45.7 25.6 45.1 54.1

CFE-SSDv2-300-MS VGG-16 300×300 36.7 58.0 39.1 21.8 39.2 47.4
CFE-SSDv2-512-MS VGG-16 512×512 39.0 60.5 41.2 25.0 42.8 48.5
CFE-SSDv2-512-MS ResNet-101 512×512 43.1 63.2 49.2 28.9 49.1 56.1

minival set and find that the improvement on both detectors is very significant
compared with the corresponding original methods.

6.2 Results on MS COCO

Besides Pascal VOC 07, we also evaluate CFE-SSD on a large detection dataset,
MS COCO. Although some module congurations may only be suitable for medium/small-
scale dataset (e.g., the number of groups may perform differently on larger
datasets), we still keep them unchangeable in this experiment for convenience.
Except VGG backbone, we also implement experiment with ResNet-101 back-
bone to compare with state-of-the-art detectors. Table 6 shows the result on MS
COCO test-dev set. When equipped with VGG, our CFE-SSDv2 300 achieves
30.4% mAP and CFE-SSDv2 512 achieves 35.2% mAP. Specifically, only CFE-
SSDv2 exceeds 30% of mAP of the overall detection results when input size is
300x300. And the result of small objects exceeds a large margin than other meth-
ods, which proves that our method significantly improves to detection small ob-
jects. We also compare with the popular efficient network YOLOv3 [26](19.5fps),
CFE-SSDv2(16.7fps) is more accurate with comparable speed. CFE-SSDv2 512
gains 17.5% AP for small objects, 35.2 mAP for overall, which outperforms all
of the other one-stage detectors. This emphasizes that the proposed CFE mod-
ules largely enhance the detection abilities of shallow layers. When changing to
ResNet-101 backbone, the CFE-SSDv2 further get a large improvement. CFE-
SSDv2 512 then reaches AP of 39.6 and achieve state-of-the-art results among
one-stage detectors, and it also has a speed of 11 fps. In the bottom 6 lines
of Table 6, we compare performance with multi-scale inference strategy, both
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Table 7. Comparison between CFE-SSD and state-of-the-art methods on DETRAC
dataset

Method Input size Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS

YOLOv2 [25] 544×544 57.72 83.28 62.25 42.44 57.97 64.53 47.84 69.75 40
LateralCNN 1000×600 67.25 89.56 73.59 51.61 69.11 74.36 55.77 78.66 23.4

SSD[22] 512×512 72.56 91.12 77.71 57.83 79.12 73.52 59.03 81.72 22.4
RefineDet [36] 512×512 76.38 92.60 83.05 63.03 82.84 78.92 64.19 87.32 21.1
CFE-SSDv1 512×512 78.72 93.58 84.85 66.15 84.72 80.40 69.43 86.97 21.0
CFE-SSDv2 512×512 79.25 94.31 84.93 67.37 84.35 80.60 70.42 87.24 20.7
CFE-SSDv2* 512×512 82.68 94.60 89.71 70.65 89.81 83.02 73.35 88.11 -

scales of 300 and 512 or VGG and ResNet-101 backbones, CFE-SSDv2 outper-
forms RefineDet. Notably, The CFE-SSDv2 with multi-scale inference strategy
has achieved mAP of 43.1, which is the best accuracy result of one-stage de-
tectors. To demonstrate the targeted improvement of our model, we bolded the
best result in Table 6.

6.3 Results on UA-DETRAC

UA-DETRAC [33] is a challenging real-world multi-object detection and multi-
object tracking benchmark. The dataset contains 10 hours of videos captured
with a Cannon EOS 550D camera at 24 different locations in China. The videos
are recorded at 25 fps, with a resolution of 960x540 pixels. Annotation contains
4 categories in total(car, van, bus, others). The difficulty behind this dataset is
small and densely distributed cars at varying weather and illuminations.

As shown in Table 7, UA-DETRAC evaluates comprehensive detection re-
sults, including Overall, Easy, Medium, Hard, Cloudy, Night, Sunny and Rainy.
The result can reflect the complete effectiveness of object detectors. As for com-
parisons, we select state-of-the-art one-stage detectors, such as SSD and Re-
fineDet. Specifically, CFE-SSD exceeds raw SSD by about 7%, and exceeds Re-
fineDet nearly by 3%. Our CFE-SSD nearly wins every condition, especially
outperforming RefineDet by 4% for hard targets detection. In addition, multi-
scale inference strategy make CFE-SSDv2 512 improves to 82.6% finally, ranking
first place at the leaderboard. It’s noteworthy that the results of RefineDet and
SSD are trained and tested by ourselves, while others are from the leaderboard.

6.4 Results on Berkeley DeepDrive

BDD [35] is a well-annotated dataset that includes road object detection, in-
stance segmentation, driveable area segmentation and lane markings detection
annotations. The road object detection contains 2D bounding boxes annotated
on 100,000 images for bus, traffic light, traffic sign, person, bike, truck, motor,
car, train, and rider, 10 categories in total. The split ratio of training, validation
and testing set is 7:1:2. The evaluated IoU threshold is 0.7 on testing leaderboard.

In experiment, we mainly compare CFE-SSDv2 with original SSD and Re-
fineDet, shown in Table 8. The version with input size of 512 could realize real-



Comprehensive Feature Enhancement 13

(a)

(b)

(c)

(d)

Fig. 4. Qualitative result examples. (a) Images from COCO, (b) Images fromVOC07,
(c) Images from UA-DETRAC, (d) Images from BDD.
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time performance while The version with input size of 800 with multi-scale infer-
ence strategy achieves the second place of the challenge on the leaderboard. Note
that, to evaluate the effects of small object detection, we average the results of
traffic light and traffic sign(denoted by S-mAP in Table 8) for comparison.

Table 8. AP and FPS Results on BDD

Method Input size FPS mAP(%) S-mAP(%)

SSD 512 × 512 23.1 14.1 9.2
RefineDet [36] 512 × 512 22.3 17.4 13.1
CFE-SSDv2 512 × 512 21.0 19.1 15.4
CFE-SSDv2 800 × 800 6.2 22.3 18.1
CFE-SSDv2* 800 × 800 - 29.7 26.0

7 Conclusions

In this paper, we propose an effective and lightweight feature enhancing module,
i.e., CFE module, to improve the detection accuracy of the one-stage detectors.
By assembling this module, the performance of the state-of-the-art one-stage
detectors can be significantly improved while their efficiency nearly doesn’t drop.
Specifically, by inserting 4 CFE modules into the network architecture of the
most widely used one-stage detector SSD, we get two novel one-stage detectors
CFE-SSDv1 and CFE-SSDv2, which have significantly better performance than
the original SSD. Experimental results on PASCAL VOC07 and MS COCO
datasets show that the CFE-SSDv2 outperforms state-of-the-art methods DSSD
and RefineDet, especially for the small objects. Additional ablation study on
PASCAL VOC07 dataset demonstrates the effectiveness of the proposed CFE
module. Moreover, CFE-SSDv2 achieves the best result on the UA-DETRAC
dataset for vehicle detection and ranks second on the BDD leaderboard for road
object detection, which demonstrate that it is effective for practical applications
such as traffic scene video surveillance and autonomous driving.
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